I M.Tech-I Semester-Regular Examinations-February 2018

MODERN CONTROL THEORY (POWER SYSTEM \& CONTROL)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.

1. a) What are the advantages and disadvantages of state space analysis over classical design methods and explain 7 M
(i) Eigen values (ii) Eigen vectors (iii) state of a system.
b) Develop the state model for the system which is described by the following differential equation 8 M

$$
\ddot{y}+6 \ddot{y}+11 \dot{y}+6 y=\dddot{u}+8 \ddot{u}+17 \dot{u}+8 u
$$

(OR)
2. a) Obtain the eigen values, eigen vectors, of the matrix 7 M $\left[\begin{array}{ccc}-4 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -2\end{array}\right]$
b) Obtain the state model for the system whose transfer function is given by $G(s)=\frac{s+3}{s\left(s^{2}+3 s+2\right)}$. From the state model, explain again how to get transfer function? 8 M
3. Determine controllability and observability of the system described by the state modal

15 M

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u} \\
Y=\left[\begin{array}{lll}
4 & 5 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
(\mathrm{OR})
\end{gathered}
$$

4. a) Derive the solution of homogeneous and non-homogeneous state equations.

10 M
b) Define state transition matrix. Derive its equation. 5 M
5. Explain in detail about the behavior of nonlinear system and classification of Non-linearities.
(OR)
6. a) Define Lyapunov's stability. Explain Lyapunov's direct method.
b) Check the stability of the Equilibrium state of the system described by the following state equation using Lyapunov's method2. $\dot{x_{1}}=x_{2} ; \dot{x_{2}}=-x_{1}-x_{1}^{2} \cdot x_{2}$
7. Find optimal control law $u^{x}(\mathrm{t})$ for the system

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-10 & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
10
\end{array}\right] u
$$

Which minimize the performance index $j=\frac{1}{2} \int_{0}^{2} u^{2} d t$
15 M

(OR)

8. Find the extremal of the function
$J(x)=\frac{1}{2} \int_{0}^{\pi / 2}\left[{\dot{x_{1}}}^{2}+2 x_{1} x_{2}+{\dot{x_{2}}}^{2}\right] d t$. Boundary conditions are $x_{1}(0)=0, x_{2}(0)=0, \dot{x_{1}}\left(\frac{\pi}{2}\right)$ is free, $x_{2}\left(\frac{\pi}{2}\right)=-1$

15 M

